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1 Introduction
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The U.S. Navy has historically sponsored the de-
velopment of mesoscalc models and both in-situ and
remote sensors. One of the driving forces  behind these
development efforts has been that the models and sen-
sors can be used to estimate tropospheric refractivity
gradients and therefore be used to provide input data
to electromagnetic (EM) propagation models. The
outputs of the EM propagation models are used as
inputs to models designed to assess the performance
(i.e. detection ranges) of radars and availability of
communication systems.

To date, combining the outputs of the different
sensors and the mesoscale model has been perceived
as a computer and networking problem. While that
work remains necessary, it must be realized that this
is also an estimation problem. The ultimate goal of
data fusion in refractivity estimation is the optimal
estimation of propagation loss given information from
t hc mesoscale model, radiosondes, refractivity inferred
from radio measurements, in-situ, measurements at the
sea surface, and from satellites and other remote sen-
sors. This is a fundamentally different approach than
that of traditional atmospheric data assimilation.

In this initial data fusion experiment we will fo-
cus on the mesoscale model and refractivity inferred
from radio measurements. In many operational sce-
narios, the mesoscale model may be the only practical
method for obtaining range dependent refractivity es-
timates. A weakness of the mesoscale model though,
is that its inherent spatial averaging washes out sharp
refractivity y gradients at the capping inversion, which
in turn results in underestimation of ducting effects.
Radio measurements, on the other hand, are highly
sensitive to the refractivity gradients in the capping
inversion but remote sensing of refractivity by radio
measurements is unlikely to ever provide range depen-
dent refractivity when used by itself. VHF and UHF
emitters are plentiful in many coastal areas and mon-
itoring them for the purpose of inferring refractivity
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is practical, Clearly, the two information sources are
complementary and are excellent candidates for data
fusion.

The data used are from the Variability of Coastal
Atmospheric Refractivity (VOCAR)  experiment (see
Paulus [1994]) which took place June through Septem-
ber of 1993. The layout of the experiment is depicted
in figure 1. Transmission links at 143, 262, and 374
MHz were operated on paths “A” and “B” that are
shown in the figure. During a special two-week in-
tensive observation period (IOP) beginning on Au-
gust 23, 1993, radiosondes were launched at roughly

four hour intervals from numerous locations including
Point Mugu and San Clemente Island. Forecast re-
fractivity fields were calculated from The Navy Oper-
ational Regional Atmospheric Prediction System (NO-
RAPS) mesoscale model as described by Hodur  [1987]
and Burk and Thompson [1989]. Refractivity fields
from the mesoscale model and the refractivity inferred
from the transmission links are used to generate re-
fractivity fields that preserve the range dependency
of the mesoscale model fields, but also have a suffi-
ciently strong trapping layer to be feasible given the
measured propagation. The Research Vessel Point Sur
was located at mid-path on Path A for roughly five
days beginning August 27. The combination of the
radiosondes from Point Mugu, San Clemente  Island,
and from the R.V. Point Sur are used to provide range-
dependent profiles that provide validation for the data
fusion method.

2 Objective of initial data fusion “-

experiment

Figure 2 is an adaptation from Kay [1993] that il-
lustrates the effect of the bias and variance of the esti-
mator. The abscissa is estimation error and the ordi-
nate is the probability. Ideally, we would like to have
our estimation errors distributed as the minimum vari-
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Figure 1: VOCAR layout.

ante unbiased estimator (MVUE)  as shown in (a). In
that case our estimation errors would be zero-mean
and have the minimum variance achievable as deter-
mined by computation of the Cramer-Rao  lower bound
(CRLB)  or other bounding criteria. If the errors have
a variance greater than the lower bound but the esti-
mates are unbiased, we might have (b). If the mini-
mum variance is achieved but there is a non-zero bias
we have (c), and if there is a non-zero bias and the
minimum variance is not achieved we have (d).
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Figure 2: Illustration of variance and bias of estima-
tion errors.

The situation using the mesoscale model by itself
for propagation estimation is (d) since 1) the vertical
resolution of the mesoscale  model results in a non-zero
bias, and 2) initialization and boundary condition er-
rors result in greater than minimum variance. If the
magnitude of the bias is nearly the same as, or greater
than the square root of the variance, very little will be

achieved by reducing the error variance without reduc-
ing the bias. Accordingly, our goal in this effort is to
utilize the radio measurements to unbias the mesoscale
model outputs while preserving the range dependent
features of the mesoscale model.

3 VOCAR tri-linear model and
parameterizat ion

Figure 3 illustrates refractivity profiles correspond-
ing to a standard atmosphere, a surface-based duct,
and an elevated duct, and provides the geometry pa-
rameters used to describe the ducts, The surface-
based-duct and elevated-duct profiles are associated
with the marine boundary layer (MBL) capped by a
stable layer. The stable MBL structure is quite com-
mon in areas such as the coastal waters of southern
California and the Persian Gulf. The refractivity prc-
files associated with a stable MBL are often tri-linear
in appearance.

Hstandard surface
profile based duct

profile

+
M-deficit

L

duct

_J-

(~elevated
duct
profile

elevated.=.

&
thickness

: 300

200 - & -

100 based duct base height

~ & 5 0  M.units

Modified refractivity (M-units)

Figure 3: Idealization of refractivity profiles for duct --
formed by the capping inversion of the marine bound-
ary layer.

In estimation problems it is customary to group pa-
rameters into deterministic parameters which we de-
sire to estimate and nuisance parameters which we are
not interested in, but must be accounted for, at least
in the statistical sense [Kay, 1993]. The elements of
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deterministic and random parameter vectors are of the
form:

@D = [ol,62,..  .&]T

and

QR = [eM+l,  0M+2, . . . efv]T

respectively. The utility of such a form is that nuisance
parameters can be “integrated out”. Ideally, our nui-
sance parameters in this problem would characterize
range and height variability in the refractivity struc-
ture that occur on time and spatial scales too small
to- predict, infer, or measure. In general, a function
g(~~, @R) is a point value corresponding to a single
realization of Q~, while y = g(~~) is a random vari-
able. If g( ) is non-linear,

G(t3D)  #

but

then,

G(63D,~)

where fen (@R) is the probability y density function for
the nuisance parameters. This is an important point in
both the forward and inverse problem in tropospheric
EM propagation: that you cannot determine mean
propagation values (let alone distributions of propaga-
tion values) without accounting for the random pro-
cesses of the propagation medium.

The deterministic parameterization implemented in
this data fusion problem is:

@D = [h, m]T (1)

where h was the height of the base of the trapping layer
in meters, and m was the M-deficit as shown in figure
3. The only random parameter was the thickness of
the trapping layer d, i.e.

@R=&=d (2)

and d was assumed to be uniformly distributed over
the interval 10 to 90 meters, i.e. the probability den-
sity function of 03 is

Clearly, this parameterization is far less sophisticated
than an ideal parameterization which (as described be-
fore) would characterize the range and short term tem-
poral variations in the refractive environment, Ideally,
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its single random component approximates the effects
introduced by the range and height variability in the
true refractive environment. To some degree, this is
the case; using a waveguide-mode model, it can been
observed that when d is varied it tends to make large
changes in the relative phsse and amplitudes of the
dominant propagation modes which lead to construc-
tive and destructive interference effects that resemble
those introduced by the true (dominantly range) vari-
ability. Nonetheless, as described in Rogers [1996],
the parameterization works poorly with weak trap-
ping layers and should be the primary area of focus in
future work.

4 Input data

4.1 NORAPS mesoscale model runs for
the VOCAR experiment

The mesoscale  weather prediction model used to
simulate the 12 day VOCAR IOP is a version of the
Navy Operational Regional Atmospheric Prediction
System (NORAPS) described by Hodur [1987] and
Burk  and Thompson [1989]. NORAPS is a hydrostatic
primitive equation model with sophisticated second-
order closure boundary layer physics which are im-
portant for describing near-surface atmospheric (and
refractive) structures. The domain for the VOCAR
experiment extends from Oregon to Baja California
and from Arizona to about 1000 km off the Califor-
nia coast. The horizontal resolution is 20 km and the
terrain following, 30 level, vertical coordinate system
is distributed so that the resolution is greatest near
the surface of the earth and decresses upwards. This
scheme allows us to resolve the large vertical gradi-
ents in temperature and moisture typically found near
the surface that are critical for evaluating refractive
effects. NORAPS was run twice daily in a data as-
similation mode to provide 24 h forecasts, with data
archived every four hours during the forecast periods.
Data assimilation is important because there is not
enough data to adequately define the structure of the
atmosphere across the model’s domain. In the data as- ““
similat  ion method, the previous 12 h forecast is used
as a starting point and observed data is incorporated
with an optimum interpolation analysis in order to
initialize the next forecast. In this way, details of at-
mospheric structures are maintained from one model
forecast to the next and are modified using available
data, This process is repeated every 12 h to maintain
an updated forecast bssed on the most current condi-



tions. Over water, the sea surface temperature field is
updated every 24 h and fixed during the intermediate
forecast periods.

4.1.1 Meteorological evaluation of NORAPS
VOCAR performance

The performance of NORAPS during VOCAR has
been documented in Burk et al., [1994] and Burk and
Thompson [1994]. NORAPS forecast a typical Califor-
nia coastal summertime pattern during the beginning
of the VOCAR experimental period. The predominate
northerly flow aloft along the central California coast
topographically forced a large-scale eddy in the bight
which resulted in weak southerly flow immediately ad-
jacent to the coast. This weak pattern allowed a sig-
nificant diurnal variation in the atmospheric bound-
ary layer and associated elevated trapping layer to de-
velop, The trapping layer tended to be low at midday
and then elevate and weaken at night. The diurnal
variability decreased sharply westward, away from the
coastline; at the location of the R/V POINT SUR,
the diurnal behavior was discernible but not nearly as
pronounced aa at Pt. Mugu. As the experiment pro-
gressed, the northerlies turned more northeasterly and
an eddy developed off the northern California coast, in
the lee of the Siskiyou and Klamath mountain ranges.
The eddy developed into a mesoscale low that drifted
southward and caused the winds in the bight to shift to
the west. This movement of the low caused the bound-
ary layer in the bight to deepen and the trapping layer
and associated duct to rise and weaken. The boundary
layer adjacent to the coast just north of Point Concep-
tion waa forecast to be somewhat shallower due to di-
vergence associated with the acceleration of a low level

jet just above the boundary layer. During this period,
NORAPS forecast a weakening of upper level subsi-
dence and the advection of moist air aloft. These two
features resulted in the trapping layer rising and weak-
ening over time. Comparison with individual sound-
ings show that NO RAPS correctly forecast the atmo-
spheric boundary layer and trapping layer trends dur-
ing the early and middle VOCAR periods, although
the depth of the boundary layer (height of the trap-
ping layer) was under forecast. The causes of these
forecast errors have been attributed to the initializa-
tion procedure and to over-forecasts of near surface
heating caused by the crude representation of the off
shore islands [BuT% and Thompson, 1994].

4.2 Refractivity inferred from propa-
gation measurements

The inference of refractivity parameters from the
VOCAR EMpropagation data is discussed in Rogers,
[1996]; only a brief outline will be given here. As de-
scribed in section 3, @ = [@D; ~~]~ = [h, m; d]~ is
a parameter vector describing a single realization of
the refract ive environment. g(@, ~) is the propaga-
tion factor at frequency f associated with refractivity
realization @. The mean propagation factor over the
realizations of @~ is g(@D,  f). In vector form, we have

G(OD, ——
g(e~,  fl)
9(@D, f2)
9(6D, fs)

where G(@D ) is the column vector of mean propa-
gation factors associated with deterministic param-
eter vector @D over the various realizations of ran-
dom parameter vector ~~. At a single frequency f.,
tj(h, m, fo) can be pictured as contour plot in the h, m
parameter space. This is illustrated in figure 4 which
illustrates contours of constant propagation factor for
the geometry and frequencies of the VOCAR experi-
ment.
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quencies at time t. The summed squared error of es-
timating the propagation factor at time t using prop-
agation factors corresponding to QD is

R(t, ~~) = (Y(t) – G(@D))T(Y(t)  – G(@D)),  (4)

where T is used to indicate the transpose.
Determining an effective error variance term a~ff

(to account for modeling and measurement errors) by
a posterzorz  maximum likelihood computation, ~Y(tJle~
(the probability density of observing propagation fac-
tors vector Y(t), given that the environment vector
63D is equal to @~) is

*Rft,e~]

fY(t)leD  (y(~) l%) = ‘(2:;,2aeff  .

The form of 5 is the result of assuming that the three
individual elements of Y(t) – G(61D ) have independent
identically distributed Gaussian distributions.

Applying Bayes’ rule we have

Pr(El~lY)  =  ~ fy(t)le~(y(t)l%)fe~  (%)

f-m fY(t)[e~(y(t)/@ D).fe~(@D)~QD ‘

where ~e~ (@D) is our prior density of @D and the
prime (’)is  used to indicate that ~~ is a single combi-
nation of the h and m. In this problem, it was assumed
that elements of (3D were uniformly distributed over
the parameters space W defined by

{

200 < h < 1000
@DCW- o <m< 65 (5)

where the limits of the parameters space were based
upon examination of the VOCAR radiosondes. Con-
sequently, the previous equation can be reduced to

fy(t)le~(y(t)l%)
‘r(~h’y)  = & fY(t)le~(y(t)l@D)  d@D “

It should be noted that while (in this case) the prior
information has been used only to limit the parameter
space to feasible values, the prior distribution is the
way by which climatology can be incorporated into the
estimation algorithm.

An example of inferring parameter values from mea-
sured propagation is shown in figure 5. We assume
that at time t, a measured propagation factor vector
of Y = [—30 — 30 — 30]= is recorded. The relative
likelihood of any particular combination of h and m
is proportional to the shading where lighter shading
indicates higher likelihood.

.
‘-M-defk;t  (M-u~ts)

Figure 5: Relative likelihood of height h and M-deficit
m corresponding to measured propagation factors vec-
tor of Y(t) = [–30 – 30 – 30]T for the VOCAR fre-
quencies and geometries.

As with the parameterization discussed in section 3,
there are weaknesses with this procedure. The great-
est of these is the assumption that the mismatches
(i.e. the values of Y(t) – G(CID))  are Gaussian pro-
cesses and are invariant over the parameter space.

5 Validation data

To prepare height-range cross sections of refractiv-
ity for the Radio Physical Optics (RPO) program,
the refractivity structure matching algorithm (RSMA)
was developed by Vogel [1991] and modified by Cook et
al., [1994]. Processing by RSMA guarantees that two
import ant input data requirements for RPO are met:
a) every profile contains the same number of levels,
and b) the nth level in any one profile is matched to a
refractivity structure at the nth level in all the other -
profiles. The matching of common refractive layers is
accomplished in three steps. First, each level in every
profile is categorized based on its refractivity structure
type. The top and bottom levels are all assigned to
the same category to ensure they are always matched
up. Second, the primary structure types considered
important for propagation are matched between ad-
jacent profiles within physically reasonable bounds.
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The matching is done iteratively, so that like struc-
tures near the same altitude are matched first. This
procedure ensures the layers transition smoothly in
refractive effect and altitude. Many refractive struc-
tures/pairings  are considered minor and are ignored
by RSMA. Third, all the remaining profile levels are
matched using a secondary “best fit” algorithm that
connects all the unmatched points between the pri-
mary matched levels. Any remaining unmatched points
are interpolated in between the matched levels to force
the structures to be consistent from profile to profile.

For this study, 14 marine cross sections were iden-
tified during VOCAR where the data were collected
within about one hour of each other. Each cross sec-
tion consists of three profiles starting at San Clemente
Is. (NUC),  runs through the NPS R/V Point Sur near
the center (SUR),  and ends at Pt. Mugu (NTD).  Ta-
ble 1 lists the profiles and the mean starting times
which were used for comparison with the four hourly
NORAPS data. Because RSMA was not designed to
process the large number of vertical levels and fine
structure associated with the profile measurements, a
simple preprocessing step was required to reduce the
data and make further processing feasible. The re-
duction was accomplished by fitting straight line seg-
ments to the profiles while preserving the important
refractive structures determined by a criterion that
depends on height. The criterion used was a 1/4 m-
unit root-mean-square (RMS)  deviation at the surface
which increased three m-units  per kilometer altitude.
This line-fitting procedure preserved structures near
the surface and considerably simplified the profiles
aloft. The resulting profiles were then processed by
RSMA and formatted for input into RPO. In general,
the cross sections depict initially a stratified atmo-
sphere with a strong surface-based duct, due to an ele-
vated trapping layer whose height tends to be lowest at
mid path (R/V POINT SUR). With time, the bound-
ary layer shallows slightly then, early on 28 Aug., the
boundary layer rapidly deepens, raising the elevated
trapping layer and the duct. The later cross sections
also describe a more homogeneous atmospheric con-
dition, both as a function of range with a consistent
trapping layer height, and as a function of height with
the atmosphere exhibiting much less stratification.

6 Performance

Before examining overall results, two “events” are
examined: serial days 239.167 and 241.666, The for-
mer is an instance where using the mesoscale  model

Table I: VOCAR cross sections from San Clemente
Island  (NUC), through the R/V POINT SUR (SUR),
and to Pt. Mugu (NTD).  Times are Pacific Standard
Time (PST).

# I Calendar date I Serial day
1 I 25 Aug. 1933 I 237.833
2
3
4
5
6
7
8
9

10
11
12
13
14

26 Aug. 1556
27 Aug. 0346
27 Aug. 0735
27 Aug. 1532
28 Aug. 0338
28 Aug. 0741
28 Aug. 1555
28 Aug. 1934
29 Aug. 0341
29 Aug. 0743
29 Aug. 1528
29 Aug. 1928
30 AUF. 0341

238.666
239.167
239.333
239.666
240.166
240.333
240.666
240.833
241.167
241.333
241.666
241.833
242.133

generated refractivity profiles results in a significant
negative bias in resulting propagation estimates. Con-
sequently, the additional information from the inverse
medium problem significantly improves the accuracy
of propagation estimates. In the latter case, the mesoscale
model refractivity estimates have high fidelity to the
true environment so that the addition of information
from the inverse medium problem does not signifi-
cantly improve propagation estimation.

6.1 D a t e  serial  239 .167

The upper plot in figure 6 is a cross section of the
refractivity fields constructed from the NORAPS tem-
perature and humidity fields as described in section
4.1. The lower plot in figure 6 is vertical refractiv-
ity profiles for the same cross section that have been
joined using the RSMA algorithm as described in sec-
tion 5. Comparing the two graphs, the following is
noted: . .

1

2.

The average height of the base of the trapping
layer is roughly the same in both the NORAPS
generated profiles and the RSMA-processed  mea-
sured profiles,

The same downward-sloping base of the trapping
layer is observed in both sets of profiles.
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3.

4.

The strength of the trapping layers is much, much
stronger in the RSMA-processed measured pro-
files.

In the measured profiles, a weakening of the trap-
ping layer with respect to range is observed. In
the mesoscale  profiles, the same, albeit weaker
trend is observed.

These two plots considered thus far illustrate just how
well the mesoscale  model forecast can capture the hor-
izontal evolution of the refractivity structure. They
also illustrate how much weaker the trapping layer
representations from the mesoscale model can be with
respect to the measured values.

Mesoscale model run for dav 239.167

~:E32zzza
o 20 40 60 80 100 120 140

Range (km)

Modified mesoscale model for day 239.167

ity distribution Pr(~D IY) = Pr(h, mlY) is described
in section 4.2. A line of feasible solutions in the {h, m}
parameters space is calculated from Pr(h, m[Y) using

{h, rn}~~~.  = Maxm(Pr(h,  mlY)).

This is equivalent to saying that once we have observed
Y, that for given height h, the feasible value of m is
the one that maximiz~s  Pr(h, mlY).

Next, the averages hMES and rnMES, are computed
from hM~S (r) and m&fES  (r), the range (?’) dependent
values of base height and M-deficit calculated from
the NORAPS generated refractivity fields (hence the
subscript MES).  The w gradient

{%z}hME_,

is computed numerically. Moving in the direction of
that local gradient we intersect the line of fessible so-
lutions. That is our value of (fiMoD, ~MoD)  where
the subscript MOD is used to denote that these are
the modified (or data fused) parameter values. Now a
set of tri-linear profiles are determined such that:

hMOD(r)  = iMOD + hMES(r)  – k&f~s (6)
mMOJJ(r)  = rnMOD + mJfES(r)  – rnMES. (7)

o 20 40 100 120 140
Ra~~e (kr$

Feasible solutions

Measured refractivity profiles for day 239.167

$iErZ3
o 20 40 100 120 140

Ra;~e (k;;

Figure 6: Refractivity cross sections for serial day
239.167 from the mesoscale  model, modified (or data-
fused) profiles, and from measured profiles respec-
tively. The thin line in each the the first two plots
indicates the height of the base of the trapping layer
h.

6.1.1 Application of bias correction

The application of the bias-correction method is illus-
trated in figure 7. Obtaining the conditional probabil-
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Figure 7: Parameter space for serial day 239.167.

The data-fused tri-linear  profiles appear in the mid-
dle plot in figure 6. It is clear that the trapping
layer strengths are substantially greater than those
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observed in the raw mesoscale model outputs. Ad-
ditionally, the range dependency of the base heights
has been preserved and closely matches that of the
measured profiles. There is a minor weakening in the
trapping layer with respect to range in the modified
profiles, but it is less pronounced than in the measured
profiles.

6.2 Date  serial 241 .666

While on date serial 239.167, there exists a large
difference between the mesoscale model predicted and
the measured refractivity profiles, on date serial 241.666,
thti predicted and measured were quite close as can be
seen in figure 8. As a consequence, the bias correc-
tion is small and the bias corrected profiles do not dif-
fer significantly from either the predicted or measured
profiles.

Mesoscale model run for dav 241.666
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Modified mesoscale model for day 241.666
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Measured refractivity profiles for day 241.666
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Figure 8: Refractivity cross sections for serial day
241.666.

6.3 Overal l  resul ts

Figure 9 is a time series of propagation factors at
1000 GHz predicted using (a) radiosonde profiles pro-

cessed using RSMA as described in section 5, (b) mesoscale
model generated refractivity fields w described in sec-
tion 4.1, and (c) bias corrected t ri-linear profiles gen-
erated as described in section 6.1.1. It is clear that the
while there are times where using the raw mesoscale
model fields results in accurate refractivity estimates,
there are times when their use does not, In those cases
(i.e. the first three data points), the bias corrected
profiles provide much better estimates.

130

G
a 140

U)
: 150

..l
1s0 -

A

~ 170
n

+ (a) RSMA processed soundings
- + (b) Mesoscsle  model
~*- (C) Biss-corrected mesoscsle model

‘l\ ? ii

237 23S 239 24; 21

Serial d: of 19~3

Figure 9: Time series of propagation factors at 1.0
GHz,

7 S u m m a r y

A simple algorithm has been implemented to fuse
data from the mcsoscale  model with parameter values
inferred from radio remote sensing. The major points “-

from the work include:

1. Weaknesses:

(a) The parametrization used is heuristic in
nature and based largely upon observations
of the behavior of the capping inversion layer
in the Southern California bight.
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(b)

(c)

With results based upon only five days of
test data from only a single geographical
region, the representativeness oft he results
is open to question.

There is no “physics” in the parameter space
movement.

2, Strengths:

(a) As is illustrated in figure 9, the intended
objective, unbiasing the mesoscale model,
is achieved.

(b) The implementation is computationally  sim-
ple.

7 .1  Future  direct ion

What direction the data fusion efforts should take
is a function of Navy needs. In this paper we have
used measured propagation data to improve mesoscale
model refractivity fields. An equally pressing need is
to be able to incorporate local radiosonde data into
mesoscale  model fields. The key element in both of
these problems is parameterization.

Ultimately, a parameterization will be developed
combining two very different techniques. First, large-
eddy-simulation (LES) such as described in Otte,  et
al. [1996], and Khanna, et al. [1996] are used to
develop parameterizations and other techniques that
makes sense meteorologically. Equally important is to
perform the sensitivity analysis to determine the mod-
cling/parameterization that is optimal from a propa-
gation estimation standpoint.
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